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A one-dimensional transient non-linear problem of continuum mechanics is considered, the possibility of an accurate analytic 
solution of which is later based on a general local analysis of singular solutions known as the Painlev6 test. For one-dimensional 
non-linear hydrodynamic models without pressure, with the transfer of a passive impunity, which generalizes the well-known 
Burgers' model, it is shown that it is possible to reduce the problem to linear problems when the kinetic coefficients (viscosity 
and thermal conductivity) are equal. Using examples of their accurate solutions, the high sensitivity of the structure of shock 
waves with impurity fronts to the satisfaction of the law of conservation of impurity in the models is demonstrated. When it is 
satisfied, each steady propagating shock wave with a viscous structure of the velocity field is accompanied by an impurity soliton. 
When several such shock waves merge (the accurately solved problem), concentration of the impurity in one overall soliton occurs. 
It is shown that, when the action of time-dependent Gaussian random forces is taken into account, an additional diffusive spreading 
of the perturbations, with a time-dependent diffusion coefficient, is superimposed on the iinearized viscous behaviour of the 
main models. © 1999 Elsevier Science Ltd. All rights reserved. 

1. R E D U C T I O N  OF THE NON-LINEAR PROBLEM 
TO A LINEAR PROBLEM 

The simplest dissipative model of a single-component complex medium is the model of a viscous heat- 
conducting liquid without pressure, while its simplest one-dimensional flows, taking the transfer of passive 
impurity into account, which has no inverse effect on the dynamics, are described by the following system 
of non-linear partial differential equations 

du dO = ~t u + U~xU 2 at =VOxU,-~-t  -- Or0+ U~x0 = ZO2x0 (1.1) 

Here u = u(x, t) is the flow rate, 0 = 0(x, t) is a characteristic of the impurity (the temperature in the 
case of heat transfer or the concentration in the case of mass transfer in a two-component liquid), the 
notation 8tu, 8~ . . . .  is used for the partial derivatives, and v and X are the coefficient of viscosity and 
the thermal diffusivity (or the diffusion coefficient), the non-dimensional ratio of which is the Prandtl 
(or Schmidt) number Pr ~- v/x. 

The possibility of the complete integrability of this system of equations can be investigated using the 
Painlev6 test for partial differential equations (we follow the terminology established in the foreign 
literature, although it is more correct, in view of the history of the investigations [1, 2], to call it the 
"Kovalevskaya-Painlev6 test"). We will here use a local analysis of the behaviour of the singular points 
of the solutions of the equations in the version proposed by Weiss, Tabor and Carnevale [3]. When 
analysing the singular solution of the system of equations in question in the neighbourhood of the 
singularity manifold e(x, t) = O, ex - 8e/ax ~ O, F. t ~ ~tF./~)t :/: O, we will represent it in the form of expan- 
sions in a Laurent series with pole singularities of finite order (the final principal parts of the Laurent 
expansions) 

u(x, t)= ~ une n-a, O(x, t) = ~ One n-~ (1.2) 
n=0 n=0 

u n = u  n(x,t), e=e(x, t) ,  O n=0. (x , t )  

In view of the fact that the first equation of the system, which is well known under the name of Burgers' 
equation, is independent of the second problem, it can initially be analysed separately. According to 
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the well-known results in [3] for the Painlev6 test, the solution of Burgers' equation can be represented 
in the form of a series containing a simple pole singularity (the equation ot = 1 and the form of the 
first coefficient function u0 = -2Vex is only the leading-order singular term of the expansion, already 
formulated in the equation) 

u = -2v  ~x + u t + u2e + ~'. u#,+3E 'n+2 (1.3) 
g m=0 

for the coefficients of which the following recursion relation must be satisfied 

V 2 -(n - 2)(n-  l)V•x2Un + (~t - ~x)Un-2 + (n - 2)(E t - 2vEx~ x - VExx)Un_ I + 

+Y. un_m[(ra- l )v .xu  m +SxUm_l]=O,  u k Ik<o=0 

In particular, for the two lowest coefficients of the series (with n = 0 and n = 1) we hence have 

U 0 = - - 2 V e  x ,  UlI~, x + e t = Vexx (1.4) 

and for n --- 2, the coefficient u2 drops out from the recursion relation and we obtain the constraint 

b~(et +u~e~ -VexD = 0 

which is a consequence of the previous one. 
It finally becomes clear at this stage that the local expansion of the solution considered possesses 

the required generality for solving the second-order differential equation, Burgers' equation: it contains 
two arbitrary functions e(x, t), u2(x, t) and therefore passes the Painlev6 test. The general solution of 
the Cauchy problem for it should have exactly such a degree of arbitrariness. By virtue of the well-known 
Kovalevskaya (Cauchy-Kovalevskaya) theorem on the existence of an analytic solution of the Cauchy 
problem for differential equations [4] of these two functions (according to the number of initial conditions 
for the second-order equation), it is sufficient to seek any analytic solutions. The initial data completely 
define the coefficients of the expansions of these solutions. 

Taking into account the expressions for the lowest coefficients, the recursion relation can also be 
rewritten, clearly distinguishing the higher coefficient, in the form 

(n - 2)(n + l)ve2xun = (n - 2)(e, + ule x - vexx - 2Vex3x)un_ I - 2VEx~xUn_ I + 
n - 2  

V 2 + Y" u n - m t ( m -  l)exUm + ~xUm-I ] + (3t + u l ~  - ~x)un-2 (1.5) 
mffil 

In this form, the "resonance" nature of the case n -- 2 becomes obvious (at "resonance" the left and 
right sides of the relation vanish simultaneously). 

Hence, for n = 3, taking the previous expressions (1.4) into account, we obtain 

4vex2u3 = -2v(2~3x + exx )u2 + (~t + ul 3x - v3~ )u t (1.6) 

If we set the arbitrary function u2 equal to zero and require the additive term ul in the general 
expansion to satisfy the initial Burgers' equation 

u2 = O, ~,ul + u l ~ u l  - v3~ul = 0 

then the third coefficient vanishes and, together with it, as can be seen from the recursion relation, all 
the more leading coefficients also vanish. Hence, the Laurent series is truncated at the final term 

u.l.~.2 = 0 (1.7) 

Finally, the solution of Burgers' equation is expressed in terms of two functions, which satisfy simple 
equations, of which one is again Burgers' equation 

u =-2v~-te~ + u,, v, + u ,~  = ve=, ~,u, + u,~:u, = vb~u, (1.8) 

Together, these relations comprise the B~icklund transformation, which enables one, from one solution 
of Burgers' equation, to construct the others [3]. In particular, by choosing ul = 0 one obtains a 
representation of the solution of Burgers' equation in terms of the solutions of the linear heat-conduction 
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equation the well-known Cole -Hopf  transformation 

u = - 2 v ~ - ' e  x, St = Ve= (1.9) 

The equation for the passive impurity also allows of a solution in the form of expansions in the above- 
mentioned Laurent series (1.2), if the following recursion relation is satisfied, in addition to the previous 
o n e  

-x (n  - I])(n - ~ - 1)~x20n + )". Un_s[SxOn,_ I + (m - [~)ex0 m ] + 
m 

+(n - 13 - l)(e, - Xe= - 2Xexax)0,_l + (at - xa~)0,_2 = 0, e k Ik<0 = o 

At the first step, with n = 0, it gives 

[2v-z(~+l)]l~Ex2Oo = O: [~ = 2Pr-1  (1.10) 

so that in the expansion for the impurity, the coefficient O0(x, t) remains arbitrary. 
In the truncation of  the series for the velocity field discussed above, such that relations (1.7) and 

(1.8) are satisfied, in the last recursion relation only one term with m = n - 1 under the summation 
sign in fact remains, and, if we take (1.10) into account, it takes the form of a formula relating the triples 
of  neighbouring coefficients On, 0n-l, 0n-2 

n(n + 1 - 2 Pr)e~0 n = [(n - 2 Pr)fPr- 1)e= - (Pr- n)2e~Ox I0 n_l + 

"I-~, - I  (5  t "I" ula x 2 -~ax)On_2 (1.11) 

Hence we see that, in addition to the case n = 0 mentioned above, the integer positive values of 
n = N = 2Pr - 1 may also be "resonances" if the right-hand sides in (1.11) simultaneously vanish. 
Substituting these values we obtain 

o.otc = ~(l_N)(e.x,: + 2exsx)OX_l +~-i(at +ulax 2 - g 5 , , ) 0 ~ _ 2  

which is only possible when N = 1 = Pr, i.e. when the kinetic coefficients are equal. 
When Pr = 1, the second "resonance" is found in fact at n = 1, which is obvious from the equation 

2(1 - Pr)e~01 = (I - Pr)[(2 P r -  l)exx -2E~ax ]00 

The left- and right-hand sides will simultaneously vanish and the coefficient function 01(x, t) remains 
arbitrary (the second arbitrary function). We thereby also obtain the required generality (two arbitrary 
functions) of  the solution of the equation for the impurity in the form of expansions (1.2). 

For the equal kinetic coefficients, recursion relation (1.11) reduces to the following relation in the 
special case when n = 2 

2e~02 = -2exam0, + %-i (a, + ujax - ~a~)e0 

it can be seen that the coefficient function 02(x, t) vanishes when 01 vanishes, and 00 obeys an equation 
for the impurity with convectional velocity U l of the initial type (1.2). Here, according to recursion relation 
(1.11), all the subsequent coefficients vanish, so that the Laurent series for the impurity 

0 .  I.~,t = 0 

is truncated. 
Finally, in the case of hydrodynamics with the equal dissipative coefficients, we obtain the set of 

relations 

u = - 2 v a x i n e + u  ,, o = o 0 / e + c o n s t  

e, + ulex = ve=,  a,u, + u~a,~u, = va2ul, 5,00 + ulaxeo = va~e0 

which enables us, from any special solutions of the system of non-linear equations (1.1), to construct 
others (the B~icklund transform). In particular, by choosing the trivial initial solution ul = 0, we obtain 
a representation of the solutions in the form 



948 V.A. Gorodtsov 

u f - 2 v a x l n e ,  0=0o1~, atefva2xlt, a,Oofvax2Oo (1.12) 

so that by a replacement of the unknowns (the Colc-Hopf and Hirota transformations [5]) we can reduce 
the solution of the initial non-linear equations with equal kinetic coefficients to the solution of the linear 
heat-conduction equation. 

In reality, laminar flows of air and also many turbulent flows of different liquids in the gradient 
approximation of turbulent fluxes of momentum and heat are characterized by Prandtl numbers close 
to unity. 

The solution of the problem with initial data 

ult=o = U(x), 01,__o=e(x) (1.13) 

for the initial non-linear equations (1.1), when the dissipative coefficients are equal, now reduces to 
the solution of linear heat-conduction equations from (1.12) with initial data 

e I,=o= e x p / l ~  U(~)a~), Ool,=o=O(x)elt=o 
~2V x 

which, using Green's function of the heat-conduction equation (H(t) is the Heaviside unit function) 

(1.14) 

can be written in general form in terms of integral convolutions of the initial distribution with the 
"fundamental solution" of the homogeneous equation D(x, t) 

" " r± i  ) e(x, t) = -.I D(x - y, t~(y, t ffi O)dy = -..I D(x - y, t)exPL2v y dzU(z) dy 

Oo(x,t)= J D(x-y,t)e(y)g(y,t=O)dy= ~ D(x-y,t)e(y)exp dzU(z) 
_ . .  - . .  ) 

In the example of the problem of the formation of the shock-wave structure and a thermal front, 
initially having the form of discontinuous distributions of the velocity and concentration of the passive 
impurity 

U(x) = 2uoH(-x), O(x) = OoH(-x  ) (1.15) 

the result can be expressed in terms of the probability integral 

2~(x, t) = erfc (-~) + exp [-k(x - Uot)] effc (~ - k~v-t) 
(1.16) 

( _?) o0 
U f l + e x p ( k x ) = U o  1- th  , 0= l+exp(kX) ,  XmX--Uot 

In the example of the problem of the evolution of the heat release, initially concentrated at a certain 
point (8(x -x0) is the Dirac delta function) 

Ol,=o=O(x)= 8(X-Xo) (1.18) 

in the velocity field of a uniformly moving shock wave of the form (1.17) we obtain for the temperature 
changes 

( 1 . 1 7 )  

20 o(x, t) = e o exp [ - k ( x -  Uot)] erfc (~ - k ~ ) ,  ~ -= x/(2~¢'w), k = u o / v 

These distributions tend, with time, to an exponential limit, describing a simple structure of the velocity 
and temperature fields in uniformly propagating shock waves with a viscous transition layer 

= 1 + exp (-kX), 0 o = O o exp (-k.X) 



Heat transfer and turbulent diffusion in one-dimensional hydrodynamics without pressure 949 

0(x, t) = 0_&o _-- QoD(x- Xo, t) e(Xo, t = 0) _ 
e e(x, t) 

_ Qo l+exp(-kxo)  exp[_(X-Xo) 2] (1.19) 
- ~ 1 + exp [-k(x - uot)] " J L  4vt 

Consequently, diffusive spreading of the initially concentrated thermal perturbation occurs, with a certain 
additional deformation of the shock-wave flow field. No equilibrium balance between the diffusive 
spreading and convective transfer is reached here. 

2. FLOW AND HEAT T R A N S F E R  WHEN 
T H E R E  ARE RANDOM FORCES 

For the flow of a liquid, made turbulent by a random external force, the simplest case for an analytic 
consideration is the case when the dependence of the force on the spatial coordinates can be neglected. 
This means that the analysis is confined to turbulent pulsations of a smaller scale than the scale 
corresponding to the correlation radius of the random force. 

The problem of solving inhomogeneous equations of one-dimensional hydrodynamics with a time- 
dependent external force 

a t + o ~ ,  -va~ ,  =f( t) ,  a , r + ~ : - z a ~ r = o  (2.1) 

by replacement of the variables 

u (x, t) = u o (t)+ u(x -x o (t), t), T(x, t) = O(x -x o (t), t), atx o = u 0, at u o = f(t) 

reduces to solving the problem for the initial homogeneous equations (I.I). Hence, the solution of the 
inhomogeneous partial differential equations is reduced to solving the same homogeneous equations, 
the solution of ordinary differential equations for x0(t) and Uo(t) and a simple replacement of variables 
(the generalized Galilean transformation). 

For a Gaussian delta-correlated random force with zero mean 

(f(t)) = 0, (f(tl)f(t2)> = fo28(t, - t 2) (2.2) 

for Xo(X) and Uo(t), due to the linear relation with this force, we will also have a Gaussian random 
behaviour with characteristics 

(xo(t)> -- o, (udt ) )  = o 

(x~)(t)> = fo2t 3 /3 - 2x, (ug(t)) = foZt, (Xo(t)Uo(t)) = fo2t: /.2 

Due to the Gaussian form, the higher moments can be expressed in terms of the second moments and, 
in particular 

2 2 ) (x~)(t))=Sn.2m(2 m-  l)..(x 0 t !  2),n 
a x 

. (exp(axo)) = exp (2 0 (2.3) 

Using the last formula and the expression for the shift operator we can easily average the velocity and 
temperature fields 

---exp (x~)) a2x]u(x,t) (u(x't))=(u(x-x°(t)'t)) I .2 j 

=exp a /o(x, t) (T(x, t)) = (O(x - x0(t ), t)) ( z } 

(2.4) 

It follows from this that, due to the action of the time-dependent Gaussian random force, an additional 
universal diffusive spreading of the average perturbations of both types (the same for the velocity and 
temperature fields even when their kinetic coefficients are different) is imposed on the usual diffusion 
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of the fields in a viscous heat-conducting liquid, and is described by the same linear parabolic differential 
operator 

( ~  - o~)(u ) = 0, (o'1~ - 0lx)(T) = 0, x -- 1 / 2(x~(t)) (2.5) 

If we consider, as an example, the action of a random force on a shock wave with a front of the form (1.17), 
then, to measure the average inclination of the wave, we obtain, by virtue of (2.4), using a Fourier expansion 

( : 2 2 k x _  
2 exPt'-~"xJSecht-~) --uO~'k _sh(lr, xl/k) q- exp(-q2"c+iqX)dq ~ ( v ( x , t ) ) -  

The asymptotic form for long times 

, / m  t, 4x) 
shows that the inclination of the shock wave in the final stage falls in proportion to x -1/2, i.e. as t -3/2. The behaviour 
of the thermal front in the model considered is similar. 

3. O N E - D I M E N S I O N A L  H Y D R O D Y N A M I C S  TAKING THE 
CONSERVATION OF I M P U R I T Y  INTO A C C O U N T  

We will now somewhat change the initial system of equations (1.1) so that the equation for the impurity 
concentration allows for the law of conservation of the total amount of material 

 ,c+aAuc)=z  c: cax=o (3.1) 

This system of equations, for equal kinetic coefficients (v = ~), can also be transformed to linear equa- 
tions using a similar Cole-Hopf-Hirota transformation (the system of equations considered is connected 
with system (1.1) by replacing the initial variable c = ~0/&) 

u =-2vO x ln~ c =Ox(Oo/e), Ot~:= vO2e, O,O o = vOx2Oo (3.2) 

The solution of Eqs (3.1) with initial data 

2u 0 
u It__o = 1 + exp(kx)' c I,=o = a o S ( x - X o )  (3.3) 

i.e. the solution of the problem of the diffusion of an initially concentrated impurity in a flow of liquid, 
related to a uniformly moving structurized shock wave, according to (3.2) has a form somewhat different 
from (1.19) 

c=~x "-~=Q°~xO° xo7 D(x-y, t)~(Y't=O)dy~.(x, t) __ ~ 1 2 °  1 + exp(-kx0) exp[_ ( x -  Xo)2 ] + i  + exp(-kX) L 4vt _1 

kl2o P . Xo - X _ Xo - X + 2Uot ] .2 

This solution consists of two groups of terms. The first is identical with expression (1.19), obtained 
when solving the same initial problem for system of equations (1.1) and which describes the complete 
attenuation of the initial perturbation when it spreads diffusely in space. The asymptotic form for long 
times for the second group of terms is a steady propagating distribution of impurity of the solitary-wave 
type 

= l k Q  ° sech 2 k(x - uot) c(x, t) (3.5) 
4 2 

Such a soliton, in accordance with the conservation of material, for a description by Eqs (3.1), steadily 
transfers the quantity of impurity Q0, i.e. a balance occurs between the diffusive spreading of the impurity 
and its concentration for transfer by the flow field of the shock wave, unlike the case of solution (1.19) 
for model for (1.1). The steadily propagating shock wave of the type (1.17) accompanies the impurity 
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soliton of the form (3.5). An accurate solution of the problem of the merging of several shock waves 
is obtained in the same way by representing the solution of the linear heat-conduction equation for 
~(x, t) by the sum of the exponential contributions from each wave [6]. Impurity solitons, which accom- 
pany the shock wave, when they merge, form a higher and narrower rapidly moving soliton together 
with an overall shock wave. Such an impurity concentration occurs in accordance with the conservation 
of the total amount of impurity. 

4. M U L T I D I M E N S I O N A L  G E N E R A L I Z A T I O N  

The approach developed above allows of a simple formal extension to the case of a multidimensional model of 
a medium without pressure, when the liquid flow can be assumed to be potential flow 

~ t  +u .Vu  = vV2u, ~ t  +uV0 ffi)~V20 

This system, when the kinetic coefficients are equal, can be reduced, by a Cole-Hopf-Hirota transformation 

u =-2vVlne ,  0 =  % 
E 

irrespective of the dimension, to a pair of linear heat-conduction equations 

~te = vV2e, ate 0 = vV200 

If we also bear in mind the potential external forces f(r,  t)  = -V(r,  t), this replacement for equations with the 
equal kinetic coefficients as before, remains effective, but the final linear equation becomes an equation with a 
variable coefficient 

0re = vV2e+ I"Lu(r'2v t)~, ore 0 = vV200 + 2-~U(r, t)00 

If the external forces are random, this enables the algebraically non-linear stochastic hydrodynamic problem to 
be reduced to a much simpler linear algebraic problem, although the stochastic non-linearity is retained. 
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